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1. Introduction.

The paper is the second in the series about the h-p version of the
finite element method for solving parabolic partial differential equations.

In the first paper [1] we discussed the case when in the t direction
only one element of degree g-— o was used.

In this paper we analyze the case when in both variables, the spatial and
time, the h-p version is used. We are showing some essential differences
between the p and h-p version. We will keep the notation of [1], but it

is not necessary to prerequisite for the present paper.

2.1. The h-p version for the initial value problem for an ordinary
differential equation.

let I =(0,T), I =100,T)], tel, X= L,(I) be the usual space with the

norm
[Tz 1/2
(2.1.1) uuux = J u dt] .
o
Let

& = {v e D) | v(T) = 0},

where C”(I) 1is the space of functions with all continuous derivatives on 1.

For any A >0 and v € é) we define

v

5t AVI(X.

(2.1.2) fivil = |
b5

where we denoted v = == Let YA be the completion of & with respect to

the norm "."Y .
A

Remark 2.1.1. In [(1] we have introduced in & the norm




v 2)1/2
(2.1.3) v, = [u§u§+-uxvux]
' A

and have shown (Lemma 2.1 of [1]) that

(2.1.4) C,vii, < dlivil, = C,ivll
1"z, Y, 2"z,

with C1 > 0, C2 < +o independent of A and v but dependent on T.

On XxYA we define the bilinear form

T
(2.1.3) B, (u,v) = J u[— %ﬂv]dt.
0

Further, let F € Yi be a linear functional on YA‘ We can define

Problem PA' For given F € Yi find u, € X such that

(2.1.4) BA(UO'V) = F(v) Vve YA'

This problem has been analyzed in [1] where, among others, the unique

solvability of it has been proved. Moreover, the solution of the problem PA

is a weak solution u, of the initial value problem

0
;+M1=f
(2.1.5)
u(0) = aa,
if
T

F(v) = J fvdt + av(0).
0

t,)

Let now k 2 0, an integer, A = (tl, 5

Sk(A) = {w|w 1is polynomial of degree < k on A}

&'K(A) = {we sk | w(ty) = 0},




We will first consider the following auxiliary problems:

(k]

forany A>0, q21, k=0,1,..., ¢>0, find w € Sk(—l,l) such that

o (k]
w +Aw[k] = cP

(2.1.86) Y K’

where Pk is the Legendre polynomial of degree k.
The following lemmas give us the estimates of the solutions for the above
problems which are important in our further analysis.

[k}

Lemma 2.1.1. The problems (2.1.6) have the unique solutions w for any
k=20,1,... . They satisfy:
[ k]
: _w (k] - 2
D=y "1_2(-1,1) = ¢/ 3k+1
i w¥(1) >0 and 1ul¥-11 s W!* (1)
111) if k, < k., then olX¥t1(1) < ol¥2l(q),

1 2
(k]

Proof. Let us represent the solution w of the problem (2.1.6) by

k
(2.1.7) wikl(t) = Zs“‘]p (t),
J J
J=0

where PJ is the Legendre polynomial of degree J and use the summation

formula (see, e.g., [2])

J
(2.1.8) B(o) = Z(ZJ-41—1)PJ_21_1(U.
i=0

Then we get the system of linear equations with the nonsingular matrix




[ 0 o o0 0| rsf(k]q ]
- (2kc1) A o 0 0 ‘31[41-(1 0
2.1.9) o -EER a0 L ooflgf] o
ESS 0o @S, of|stl o
| S A Y| B

So, we can see that the representation (2.1.7) is unique and the problem

(2.1.8) has a unique solution for any k =0,1,2,... . Then
- [kl
. W (k] _ _ 2
D52 "Lz(-l,l) = "CPk"Lz(-l.l) = T

Furthermore, all the coefficients ng], J=0,1,...,k, are positive,
which immediately implies (ii). Indeed, from the property of the Legendre

polynomials, we have

k k
(kI .\, - Z' 3. (k] (k] _ (k]
W enr =) ol s ZBJ WK1y,

30 50

By analyzing the system (2.1.9) for k and k+1 we can observe that

(k+1) _ (k] _ 1
Beer =B =
[k+1] [k] .
Bk+1-j > Bk-j for j=1,2,...,k,
and
[k+1]
BO > 0.

The above inequalities imply that

kg k1
[kal Z (kq]
:E:BJ > Bj if k2 > kl'
k=0 k=0




i.e.,
o111y < ol®l(1) 1r k< k..
1 2
Lemma 2.1.2. Let wgkll and wékz] be the solutions of
AT
- 11 _ -
) -+c1Aw1 clPk , t e (-1,1)
1 1
and
5
- 21 _ -
= -+c2Aw2 csz , te(-1,1),
2 2
respectively. Then, for k1 < k2 and cz/c1 = 0,
(2.1.10) wikl](l) < max(1,0°%2)y [k2](1).

(kq] (ko]

Proof. The values W, (1) and W,
way (see (2.1.9)):

K1 op(h k)

1
1+ —_—
2 : 21|’
i=1 (612

]

[kxl

|-

(1) =
L

- ke £1,k,)]
1+ ) ——=2|,
[_ i=1 (CZA) j

[kg](l) -

>| -

with some integer function f(i,k) 2 1. Then

I Zrax)] k2

=|1+ —_—] = =1+

; e
i

[k2](1) 1
(c.A)
=1 2 i=1

K2 ¢(1,k )]

1 ZE: 'R
2 |1+ ) ——=|.
2k2) [ (clx)21

max(1, o i=1

Now, by using Lemma 2.1.1 with A—»Acl and ¢ = c, we complete the proof.

£(1,k,;)

(UCIR)

2
21

(1) can be expressed in the following




2.2. The h-p version of the finite element method for the problem PA

Let now
(2.2.1) AN:0=t0<t1<t2<...<tN=T
be a subdivision of (0,T) into time intervals Io=@( _,t)., n=
1,2,...,N, of the length T =t -t , and d_ = Tt /2. Furthermore, let
n n n-1 n n
q-= (ql.qz,...,qN), q, 2 1, an integer, n=1,2,...,N, and
(2.2.3) s=sT = quexiu, es®lan
n
= &9 _ On
(2.2.4) v=_§ (ved, | v|1ne sR(1 )},

The definition of Y implies the continuity of v e V and v(T) = 0.

A
We define the h-p version for the problem PA: For given F € Yi, a
mesh AN’ q = (ql,qz....,qN) find ug € S such that
(2.2.5) Bk(ug'V) = F(v), VveV.

Remark 2.2.1. The problem (2.2.5) is actually the set of N problems to be

solved in the succession. Let us denote for n=1,2,...,N

= . < -~
Sn (un : In—+R Iun is a polynomial of degree < qa, 1},

"
—
-

-
-4
¢
—

Vn = {vn : In—+R Ivn is a polynomial of degree < qn), n

VN = (vN : In—ak Ivn is a polynomial of degree < q. vN(tN) =0}, n =N,

and represent the space Vn in the form of the direct sum

(2.2.6) \') =V“]evwh n=1,2,...,N-1, V =V“]
n n n N N
where
N N LR
n n n n n
B




vzl o f21 oy 2
n n n

n = cnxn}'

where X is a (fixed but arbitrary) polynomial of degree < q, such that

(tyq) =0, x (t ) =1

Taking into account the continuity of each function v €V, v|I € Vn we
n
see that
N
dim V = dim S = S
n=1

The result is that the problem (2.2.5) is replaced by the following set of N

problems

n (1}, _ [1] [1] [1]
(2.2.7) BY(u v )—F“(vn ) vv eV
where for n=1,2,...,N,

Q[l]
n (11, _ _n (1]
Bl(un’vn ) = J un[ 3 '+Avn ]dt
1
n
with
Fl(vtll) = J fv[lldt + av[ll(O)
1 1 1
(2.2.9) Il
n, {1}, _ (1] (21,, _ on-1 [2] -
Filv ') = J fv ~dt + J fv_ydt - By “(u _,,v 1), n=23,... N,
1 I
n n-1

and

[2] _ [l - -

Y (tn) = vn+1(tn) vn=12,...,N~1.

Let us note that the above sequence of problems is independent of the

selection of xn.

Theorem 2.2.1. 1) Let ue€esS, veV, then




(2.2.10) IB, (u,v)| < IIuHxIIVIIYA
ii1) If q, 2 q, 2 ... 2 dy 21 and 1:1/1:J o forany {1 S5 J SN,
then
(2.2.11) d,(g,N) = inf sup [B,(u,v)] 2 1q—l/zN-lmin(l.o'—(2m+(1/2)))
A A 4™
ues veV
Hully=1 Wvil, s1
A
ii1) Let v eV, vaz0, then
(2.2.12) sup IBA(u.v)l > 0.
uesS
Hu"x=1

Proof. 1} (2.2.10) follows from the Schwarz inequality.

ii) Denoting by

, 172
(2.2.13) lagly o = [ ulat
I
n
and
Qn 5 172
(2.2.14) v i = N W
nY. ,n A n
A
I
n
we get
N, e
(2.2.15) ully = [ rugiZ
and
N , |12
(2.2.16) vy = | vald
S Gl

For given u € S, u|I = un € Sn. we will construct v e VYV, such that
n

v|In =v € Vn'




and using v = v as the function from the test space we will prove our claim.

Let
qn-1
(2.2.17) w_ = ZE: n Lkl
n n
=1
where
qn-1
_ n
(2.2.18) u = Z aknP ,
k=1

(k]

where Pz is the k-th Legendre polynomial on In and w € Sk(In) is the

unique solution of

* (k]
w

L £

(2.2.19) Y n Kk’ n'

By transforming these problems onto the reference element (-1,1) we can see

that
okl ¢ g¥(-1,1), k=0,1,...,q -1
n n
satisfy the following equations
{;[k]
n 1/2~[k] _ ,1/2 _ _
(2.2.20) l/z‘ﬁldn n = dn Pk' te(-1,1), k= 0,1,...,qn 1.
ad
n
The problems (2.2.20) are of the type (2.1.6) with different A_ = Adrl‘/z and
S d;/z for different n =1,2,...,N. Thus
n én 2
(2.2.21) BA(un’wn) = J un[--7i4-kwn]dt = "un"X.n
1
n
and
(2.2.22) IlwnHYA'n = llunllx'n-




Now let
w (t )

[q ]
2.2.23 = - n
( ) "o~ “n w In ()"
“n
where qu“] is the solution of (2.2.19) with k = q,- Obviously,
(2.2.24) wn(tn) =0, n=1,2,...,N,
and
w (t )
g0 __nn_ lqnd] _ g0 - 2
BA(un wn) A[un’wn wlq“l(t y 0 ] BA(un'wn) “un"X,n
n n
since
n lanl, _
BA(un.wn ) =0
Further
qn-1 (k] qn-1 (k]
- n [k - 2 n /2k+1 [k
(2.2.28) Iwn(tn)l = I:E: a v, (tn)l I:E: /EE:Tak /é—i-wn (tn)l
k=0 k=0
a-1 a1
:E: 2 02 172 :E: 2ke1, [kl(t )2 172
Ik+1 2k z
=0 =0

A

n n

n (tn)lﬂunﬂx,n.

where we used the Schwarz inequality and Lemma 2.1.1 1ii). Thus

' |"’1’1“’:1)l [qn]
(2.2.27) Iw Il < Jlw |l +-T——1—————uw |
n YA'“ n YA’" lwnq" (tn)| n YA,n

172 | ,ldn 4172

[o X

]
< fu il + D 9p'®n (t )'"“ "X nn J/—7?—-
n X,n ﬁlwr[‘an(tn) l ZQn"'l




[k) _
Since lwn (tn_l)l <u for k = 0.1,....q, (Lemma 2.1.1 1i), we get
analogously as before
o _(t )1
n n [qn)
(2.2.28) Iwn(tn_l)l s |wn(tn_1)|* i lo (tn_l)l
lo (tn)l

-1/2 {qal
sd Vfdnlwn (tn)luun"x’n-

Let us now define the following sequence of functions zn € Vn. We put
(2.2.29) z, =0

and

be the solution of the problem

z w,(t )

_ON-1 _ N °N-1"  _N-1
R T widn-1l ey o te Iy
N-1 N-1
where wag"] is defined by (2.2.19). Then
fw,(t, )1
N ON-1T
(2.2.31) uzN_luYA’N_1 < T, )|"PqN_1"X,N—1
N-1 N-1
-1/2 [qu] 172
<N Vqylay ™ () Hluglly yay”1v2
ACTEY )
oy (ty) 1V2qy_+1
If dy < Ay-1 and dN—l/dN = ON.N-1 £ o, then from Lemma 2.1.2
(2.2.32) 10l (e 31 s joldtT ) (max(1, 62IN-1)
ne N N N-1 N '
and
172 172 2qg-1+1/2
(2.2.33) IIzN_lllny_1 < 27 "qy | max(l, o )"uN"X.N'
Further,
11




Zy-2 € Vn-2
is the solution of the problem
z we  (ty )4z, (b o) o
(2.2.38) -N2,5p o N1 N2 N-1 N2 N2 o
N-2 wm-gl (t ) dy-2 N-2
N-2 N-2
Since
lzN—l(tN-z)' < IZN—I(tN-l)l = IwN(tN_l)I
and from (2.2.28)
-1/2 (qn-1]
(2.2.35) ey g (b o) S dy ) ‘/z-qn—ﬂ‘"n-l (tN-1)|"uN—1"X,N-1
while
-1/2 [ax]
(2.2.36) lay(ty_) 1Sy V2ayloy ™ (e gl s
we have (with Lemma 2.1.2)
-1/2 [an-11]
2.2.37) o I P (e Vaay_ylogZy T (g d iy iy Ny
e N-2"Y, ,N-2 lordn-2ly g,
N-2 N-2
-1/2 {qn]
+dN VﬁlewN (tN)l"uN"X,N d1/2¢/——7§——-
Tdn-27, N-2V 2q__+1
fog 572" (ty o)1 N-2
172 1/2 2qn-2+(1/2)
s 2 qN_zmax(l,w )("uN-IHX,N-1'+"uN"X,N)‘

Hence we can define the sequence z € Vn in the recursive way

(2.2.38) N N
z__ w(t ez (t__ )
S Dlay =R Bl nln=2 0 S NN-1,N-2,....2,
A n-1 lqn-17, q n-1
w21 (tn_l) n-2

where u![‘ffl"ll is defined by (2.2.19). Then

12




N

172 172 2¢n-1+(1/2) :E:

(2.2.39) "zn-luYA.n—l s 2% [max(1,0 ) Fagly -
i=n

Finally, let v € V such that

(2.2.40) =w +z for n=1,2,...,N
n ‘n

v|I
n

Obviously from our construction, v 1is continuous and v(T) = O. Moreover,

n = =

Bk(un’zn) 0 for all n=1,2,...,N.

Thus

2 2 2
Bug i (#Huply oo +laylly

(2.2.41) sup |B,(u,v)} 2

vev * gz s+ tlugezld 0172
||V||Y <1 A’ A’
A
2 2 2
. gl Hhpl? e e |
- L1172 2 2 2 2 172
2 ["wlnYA.1+"'+"wN"YA,N+"21"YA,1*'"+"2N-1“YA,N-1]

2 2
. hughy 1+ *hugly o

- N N 2+1/2
3/2 1/2 2 2 4qy+1
2 q [Hulnx’1+...+"uNuX'N+max(1,a )ngl[ign"uiux'i] ]

and further

N
(2.2.42) 2
nEIHuon'n
vev By (w2 a2 172 ¥ 2 aq+1, N 5 112
vl =1 27 "qy [ng uunux’n+N(N—1)max(1,¢ ) § "un"X,n]
Y =1 n=1
A
N 1/2
Tl 2
=1 n'X,n
2
4q:/2N max(1.02q1+1/2)

The inequality (2.2.42) immediately yields i1).

1i1) For any v eV, v, = v|I € Vn, we select u € S, such that
n

13




*

(2.2.43) u = u|In = -V

Then from continuity of v € V and v(T) =0,

T N .
- TR _ . v
(2.2.44) B(u,v) = J‘u:f;w]dt = ZJ ( vn)[ =t AV ]dt
0 n=1"1
N , 02 N 02 N
- n, _ . _ n, A d 2
D[ sha-a] ] [ a3y [ dda
n=1Y1 I n=1"1 =1"1
n n n n
N . ;2 N
-~ n.,, _A 2 _ 2
- Myt EZ[ 2(¢ ) -v3ce_ 1)]
n=1"1 n=1
n
N | 02
- n., _Af 2 _ 2
= :E: 5t §[VN(tN) vl(to)]
n=1"1
n
N . 2
vn A2
= Z X—dt "'é‘Vl(to) >0 if v =0. [ ]

n=1"1
n

Theorem 2.2.1 together with Theorem 2.2 of [1] and Theorem 6.2.1 of {3] (see

also Appendix of [11) ylelds

Theorem 2.2.2. There is a unique ug satisfying (2.2.5). If u, € X 1is the

exact solution of the problem PA and a, 2 d 2 ... 2 dy 21, -ri/tJ £ o for

1<1<JsN, then

inf"uo—wux.

172 02q1+(1/2))]
wesS

(2.2.45) Huo-ugnx < [1+4q1 Nmax(1,

2.3. Comments.

If (2.2.11) is optimal, i.e., if there is a sequence of (Ai,gi,Ni} such

that

14




-1/2,.-1 -(2qy,1+(1/2))
dhl(ql'Nl) < qu.l N1 min(1, o )

with C independent of i, then there is a sequence of solutions u, € X

i

such that
lu,-u_ |l
i1 g, X
i 172 2q,,1+(1/2)
TRETu, Wiy 2 qu'lNimax(l.c ).
weS

{See Theorem 2.10 of (4].)

The optimality with respect to the exponent of q has been proved in

{1]. Let us now prove the optimality with respect to the exponent of N.

Consider the case of a uniform mesh

(2.3.1) A: Q= to < tl < ... < tN =T
with
(2.3.2) t -t == 1

e n n-1 N’

let q =q=1 and v € V be defined by (Figure 2.3.1)

(2.2.3) v(t) = (-1)“[(2N-2n+1)t-+N'“'(2"'2“*1’“ 1,2,....N.

N ], t € In' n

2z~ ziv Zie Zi> Zlo ZI <

]

z zlp zhs 2o Zj~

Figure 2.3.1 v(t) for N = 6.

15
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Now, let wl,wz,

"’wN-l € S denote the basis function defined by

. 1 te In
(2.3.4) wn(t) =

n=1,2,...,N.
0O tel

n
Then we have

(2.3.8) Bk(wn'V) = J wn[—
I

n

M| <.
+

NA il

A\':]dt = (-1)“[”—'2—'114 A ] n

Any ue€ S can be written in the form

N N
= 1
(2.3.8) u = chwn with |u||X = § Zc ,
n=1 n=1
then
N
=y _ n+1_  [2N-2n+1 A
(2.3.7) B, (u,¥) = Z[( 1) n[_W_+_§]],
n=1 2N
Obviously
(2.3.8)

sup | [( 1)n+1 n[:ZN 2N-2n+1 X

lulyst = 5«5]]' = [NZ [gN—'ﬁ;‘—*l»,_L]z]l/z

2
n=1 2N

+ 1+
A2 N°

. Kl [N_E 7\2] 1/2.

Note that there exists a constant K2 > 0 such that

(2.3.9)

2 1/2
Wy 2 k[fGe1ea®)
A A

Combining (2.3.8) and (2.3.9) we see that if A

is sufficiently large in
comparison with N (e.g., A 2 N),

there 1s a constant C > 0 such that

16




(2.3.10) inf sup B, (u,v)| < en L.
veV ues
vy, =1 flulls1
YA X

We have to understand (2.3.10) as an estimate which is uniform with
respect to A. We have seen that for given N, the estimate (2.3.10) holds
for A sufficiently large respectively to N, e.g., A 2 N.

On the other hand we can easily show that

(2.3.11) inf sup 1B, (u,v)| 2 canah 1,

veV ues
MVHYA=1 HUHXSI

In fact, given v e V, select u= -§u Then u € S and we have
' v2 . Tv2 12 Tv2

(2.3.12) B, (u,v) = —-vvidt = | —dt +=v7(0) 2 | —=dt.

A A2 A2 2 A2

0 0] o]
Thus, using Remark 2.1.1
(2.3.13) hully < clivily
A
and
T T
(2.3.14) f vZdt s cj v2dt  (because v(T) = 0),
0 0
2 ! V2 22 4 : v2
(2.3.15) “V"Y <C [——4-A v ]dt S C(1+A7) —dt.
A Az Az
0 0
Hence
(2.3.16) B, (u,v) 2 —0 vi
1+A A
which yields (2.3.11).
The assumption q1 2 q2 2 ... 2 qN seems to be only implied by the
17




specific construction of the sequence {zn)L1 in the proof of Theorem 2.2.1.
However, the counterexample considered below will show that the assump-
tion tl/tJ So for 1 S J SN is necessary, i.e., without this condition

dk(q.N) can be arbitrary small (for some A). Let us consider only two

elements of length 1 and 1, respectively, and q =49, = 1.
Viu

| I+T t
Figure 2.3.2
Thus
(b-a)t + a 0O<ts1
(2.3.17) vit) =4 b, p1edy 1<t < 1eT
T T
X 0<t <1
(2.3.18) u(t) = {y 1 <t < 141,
Then
L x(a-b) yb x(a+b)  ybt
(2.3.19) B(u, v) —X—+i—+7\[ 5 + 5
and
2 2 2
luly = x“+y"x
(2.3.20)
1+t
» 2 2 .2 2 2 .2
Mz = v 2+ nv)z dt = 2 -ab+b +b—-+A2 a —-ab+b +E_.f. )
yA A 2 2 3 3
A 0 A TA
Obviously,
18




2 24172
(2.3.21) R=2 sup lxib+yﬁ: E‘/—;' = A[(a+b) +b._T]

2 2 4 4
(x,yl
x2+y21=1
1/2
_ 12 1 2 T+l
= A[a.a +4—2ab+b —4—]
Let
212 1 2 T+l _
(2.3.22) inf A [Za *ZZabi—b —4—-] = Qmin’
where inf is taken over a,b such that
212 1 2 T+1) _
(2.3.23) A [§a +§2ab+b —3—] = 1.

Then Qmin is the smallest eigenvalue of the following eigenvalue

problem
(2.3.24) AZ = QBZ,
T
where Z = (a,b)’,
11 11
_|17 1 3 6
(2.3.25) A= _1. l"'_"" B l 12.
4 4 5] 3

_ n2 4t+3 _ 21+l T
det (A-QB) = Q T Q-F*"ﬁ-o

and Q , —0 as tv—0. Assuming that (2.3.23) holds, it is obvious that
min

there exists a function 0 < H(t) < w, 0 < T < w, such that

(2.3.26) llv]lg < x(r)%«» 1
A A
and
(2.3.27) sup IBA(u,v)l < }((t)-1—3-+R.
hull 51 A

Hence, using Remark 2.1.1, we get

19




dk(t) = inf sup IBA(u,v)l < [££§l~+0;:i][14-£££l]_1/2.
Ivly =1 ful st ) )
A
Now, if A 2 Q;:;231/3(r) and A 2 #7%4(1), then
1/2
(2.3.28) dA(T) < 2Qmin

and dA(T)(t)—aO as T—0.

We have once more analyzed here the estimate which is uniform with
respect to A. Analogously as before, we could derive an alternative, not
uniform estimate.

Let us now analyze in detail the finite element method (2.2.5) for the

problem PA with q, = 1, T = T, T/N, n=1,2,...,N. We get now
2 T
v [1+ 2] = ax+ 2| £(t)(=-t)at
1 2 2
(2.3.29) 0
t
Y .Y 2 n+1
ntl “n_ A _
___?___4-5—(yn+yn+l) = AJ f(t)gn(t)dt,
tn--l
where
l(t-t ) for t <t <t
g (t) = T n n-1 n
n 1
?(tn+1 t) for tn <t < tn+1
and

1
Yn = ug“n 7)) = ug.'In(tn), n=12...,N

We see that the finite element method is the well known Crank-Nicholson

difference scheme. By Theorem 2.2.2 we have

(2.3.30) Huo-ugﬂx s CN 1nfuu0-wnx.
wesS

20




where u is the exact solution of the problem P,. Obviously, for smooth

0 A
function as e.g., Uy = t2 we have
-1
1anu0-wux 2 CN
wesS

and (2.3.30) suggest that the method does not converge.
On the other hand, by the classical finite difference approach we have
-1, (2)
CN "“o "LQ(I)
(2.3.31) Iuo(t -y | s
n n
CN-Zuu(S)ll
0 Lm(I)

Letting Puo € S be such that PUOII = uo(tn) we get

n

1, (2)

(2.3.32) * g = Pugly * 1Pug = ugly < CN “llug (1)

I Uy - ugllx

Hence we obtained the convergence in contrast to the estimate (2.3.30).
Let us first note that using (2.3.11) we get instead of (2.3.30), where

C 1s independent of A, the estimate

< C(I#A4)infuu -wW

(2.3.33) o “X’
weS

| Ug - ugllx

Further, we remark that the estimate (2.3.31) assumes high smoothness. Let,

for example

2
_ -A%t
uo(t) = ale
Then
(k) _ o 2k+1
flu "L () - CA
o
and for A = N we get from (2.3.32)
1.5 4

Huo-ugux S CN A7 =CN’,

while by (2.3.30) we get a bounded error.
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3. The h-p version for the parabolic problem.

3.1. Preliminarjes and problem formulation.

Let Q¢ Rz be a bounded, Lipschitz domain with a plecewise analytic

boundary TI'. Let D= IxQ, I = (0,T). Then we will consider the problem

du _
a—t—Au-f on D
(3.1.1) u=0 on IxI

u(0,x) = g(x) on Q.
Let, as in [1], X = X(D) = Lz(x,ﬁl(n)) with
T
(3.1.2) uuni = J uunz1 at
0 i)

and Y = Y(D) be the completion of

& = (v ec®I)|vit,x) has for any t € I compact support
in Q@ and v(T,x)} = 0}

in the norm

T
(3.1.3) Ilvlls = J avi®_, 'fHVIIZ1 )dt
H (Q) g )
0
» _8v
where v = 3t
On XxY we consider the bilinear form
T
(3.1.4) B(u,v) = JJ (~uv+YuVv)dxdt
o'Q

and the problem P: Given F € Y, find uo € X such that
(3.1.5) B(u,v) = F(v] vV vey.

In [1] it has been shown that problem P has a unique solution for any

22




F e Y and the solution Y, of the problem P is a weak solution of (3.1.1)

with

T
F(v) = J g(x)V(O,x)dx4-J J f(t,x)v(t,x)dxdt.
Q o'

3.2. The semidiscrete problem. Discretization in x.
Let Rc ﬁl(ﬂ) be a finite dimensional subspace of functions and

S

{fue Xlu(t,x) e R Vtel},

v

{veY|lvit,x) e R Vtel}

The semidiscrete approximation of the solution for the problem P is defined as

the function u, € S satisfying

(3.2.1) B(us,v) =F(v) VvvelV.

The following estimate of the error for this semidiscretization has been

derived in [1],

(3.2.2) lu~u o < C(H(R)) linfju
0 s'X
weS

-u

oYy

under the assumption that the space R has the property X, 1l.e., there is
a number H(R) < 1 such that

(3.2.3) bul _, 2 RR)uI
H (o) H ' (0)

holds for any u € R with

II uvdx|
Q

lul _, = sup

Kl  ver VI

R il

23




Moreover, it has been proven in [1] without assuming the property X, that

(3.2.4) Huo-usﬂx < Cﬂuo-Pouoﬂx,

where P0 denotes the Lz-orthogonal projection of X onto R.

Assuming that R is (§,7,v)-regular, i.e.,

flaff 1
= (Q)
E(R) = Sup "—uT——— < 4o
ueR L. (Q)
2
n(R) = sup [Ju-P,uj < +o0
o1 1 Lz(n)
ueH (Q)
[lall <1
i)
v(R) = sup Ju=-P.u| < +o,
ﬁl 0 LZ(Q)
ueH ()
fluil <1
il ()

where PO’ respectively Pl’ denotes the L2-, respectively, Hl—projection

operator of ﬁl(ﬂ) onto R, we have proved

(3.2.5) H(R) 2 (1+€(R)n(R)) L.

Further we have shown that for any u e ﬁl(ﬂ), llull 1

1
€1))

(3.2.8) Hu-—POu" 1 < (1+9(R)+v(R))E(R).
: 9 {0))

3.3. Numerical examples.

Let us consider the following problem:
u-u” =0 for (t,x) €D = (0,1)x(0,1)

(3.3.1) u'(t,0) =0, u(t,1) =0 for t e (0,1)

24




u(x,0) = g(x) for x € (0,1),

2
a3
5-

where u = g%, uw = —, u’ =
ax

Due to the symmetry, the above problem is

equivalent to the problem on D = (0,1)x(-1,1), homogeneous Dirichlet
boundary conditions, and a symmetric solution.

We will address the cases 81(X) = 1-x2 and gz(x) = 1-x. In the
first case, the solution has singularity in the point x =1, t = 0, while in
the second case the singularity is located in the point x =0, t = 0.

First, we consider the case of one single element in time and three dif-
ferent meshes in space with discretization in space only. The first mesh (a)
consists of one element only. The mesh (b) and (c) is composed by two ele-

ments with the nodal point in x = 0.05 and x = 0.95, respectively, and the

space S polynomials of degree p on each element. Obviously for 81

inf flu-w|
WweS X

is essentially the same for the meshes (a) and (b) and the asymptotic rate is
the same because the refinement is at the place where there is no singularity.
In the case of mesh (c) we expect essentially two phases, the first one when
the rate is exponential (in p) and the second one for sufficient high p
when the rate is algebraic, the same as for meshes (a) and (b) (for more see
(51).

On the other hand #(R) is different for the meshes (a) and (b) and

H(R) 1is the same for the meshes (b) and (c). In fact, (3.2.5) yields that

hmax -1
}C(R)Z[1+ph ] :
min

where hmax' respectively hmln is the length of the maximal, respectively

minimal, element. Figure 3.3.1 shows that the effect of H(R) does not

25
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appear in the computations.

For the mesh (a) we have two estimates (3.2.2) and (3.2.4). The estimate

4.S+c)

(3.2.4) leads to the rate olp as shown in [1], while the estimate

(3.2.2) gives the rate 0(p—4*e

), € >0, arbitrary. The fact that the
meshes (a) and (b) give practically identical results shows that the factor
H(R) does not influence the results. Further, the case of the mesh (c) shows
exactly what had to be expected, namely a concave curve (which would straight-
en for higher p). The theoretical slope p-4'5 based on 3.37a [1] is shown

in Figure 3.3.1, too.

SPACE DEGREE p
2 3 4 6 8 10 12 1416

T T 1
g, (x)=1- x?
0™ -
¢ 10 g
R
E? \\}SQSQ t:?3~\
5 o3 AN
w \\.\*
2> -4 \'\\\
= I0'}=0 1 LN
3 — (@) — \0.\\§\
& 5o &t o) xmme AR N
0.08 AN
0 ( ) »
6] “——=ul(c) o—— N\,
10 0.95 o\
.L\
| [

Figure 3.3.1. The relative error of the semidiscrete method (discretization)
in x) vs. the space degree p in %he log log scale for the
problem (3.3.1) with g;(x) = 1-x° (slope based on 3.37 a
(11).

{a) one space element h
(b) two space elements h,
(c) two space elements h;

nn =

0.05, hp = 0.95
0.95, hy = 0.05.
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Figure 3.3.2 shows the analogous results for gz(x) = 1 -x. Now the

singularity is in x =.0, t = 0 and hence the mesh (b) is better than mesh
(c) in contrast with the previous case. The theoretical slope p—2.5 is
displayed in Figure 3.3.2, also.

Hence we can conclude that the performance of the method is not sensitive

to the mesh (at least in the one-dimensional case).

SPACE DEGREE p

2 3 4 6 8 10 12 1416
i | | '
g, (x) =1-x
10~ S _
\\
% -2 §§\§\.8\ 25
iz 0 N S ’
W i \~Xfffijfa=#h§a§§’
g L0 ?__! (@) o= x\\ a§'\8§
< el % ) eeme
o 10 [ oos X AN
(h'ed o) | x\
oSl Toesle) o " —
l

Figure 3.3.2. The relative error of the semidiscrete method (discretization
in x) vs. the space degree p in the 1log log scale for :he
problem (3.3.1) with gp(x) = 1~-x (slope based on section
3.4 [1]).

(a) one space element h =
(b) two space elements h;
(c) two space elements h,

0.05, hp = 0.95
0.95, hy = 0.05.

[
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3.4. The semidiscrete problem. Discretization in t.

Let now (as in Section 2.2)

(3.4.1) A, : 0=t <t , <t <.., <t =T

be a subdivision of (0,T) onto time intervals In = (¢ tn) of the length

n-1’
T =t -t . Furthermore, let
n n n-1
(3.4.2) q-= (ql,qz,...,qN). q, 21, an integer, n=1,2,...,N
and
- 2 dn~1
(3.4.3) T ={uel(I) | ul, es (1)}
a-1 In n
(3.4.4) T; = {veckD | v]I € Sq“(In) and v(T) = O}.
n

Define now

- 1
(3.4.5) Sy = Tg_lxﬁ (Q)
(3.4.6) v =Pt
q q

For any u € Sg’ respectively v e Vg, we have

[+ ]
(3.4.7) u(t,x) = :E:ai(t)ui(x),

i=1
where u, are the eigenfunctions of the corresponding elliptic eigenvalue
problem introduced in [1], with

i g-1
and
o«
(3.4.8) vit,x) = :E:Bi(t)ui(X)’
i=1
with
28
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)
Bi € fg.

Defining the bilinear form B(u,v) on Sg'xVg by

Tr @
(3.4.9) B(u, v) =J [Z(-aiéi+?t?a181)]dt.
oli=1

where Ai is the eigenvalue corresponding to u i=1,2,..., we can use

il
Theorem 2.2.1 to prove

Theorem 3.4.1. Let u. be the solution of the problem P and u its semi-

0]
discrete solution (discretization in t). Then, if 9 2 q, 2 ... 2 ay 21
and ti/TJ S0 for 1 <1< JsSN then
_ 1/2 2q,+(1/2) _
Hus uO"X < qu N max(1,¢ Jinf Huo wux

wesS
q

3.5. Numerical examples.

Let us consider first the case when the initial function ga(x) = cosgE
and the semidiscrete (discretization in time) is used. In this case the
problem essentially reduces to the ordinary differential equation because
83(x) is an eigenfunction. Figure 3.5.1 presents the results for different
meshes. Theorem 3.4.1 gives the error estimate which strongly depends on o.
Figure 3.5.1 shows that the factor depending on o is not essential, mainly
because the eigenvalue A 1is not too large and the major effect, as before,

arises from the approximation. We mention that we could give for this case

another estimate where the right hand side depends on A.
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TIME DEGREE q
| 2 3 4 5 6 8
|

| ]
IO" g~ —— o

e = B._.
N&\ iy gs(x) cos 7

(vl N
2 AN
L IO- \\(\'o\
L - @ (@) o< by \
> -
= 107 i \’.‘\ \,
m B \ —
E 0% o—-— (c) 0=50 \
s
0"

Figure 3.5.1. The relative error of the semidiscrete method (discretization
in t) vs. the time degree gq 1in %}t(me log log scale for the
problem (3.1.1) with g3(x) = cos— and the following meshes:

2
(a) 11 =0.1, 12=0.2, 13=0.3, 14, =0.4, o< 1
(b) T, =0.1, T2=0.4, 13 =0.3, 74 = 0.2, o =2
(¢) Ty = 10/71, T3 = 50/71, T3 = 1/71, T4 = 10/71, o = SO.

In the other example (Figure 3.5.2) we did not observe the dependence on o

(although for some solutions such dependence will occur, see (2.3.28)).
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TIME DEGREE gq

| 2 3 4 ) 8 10 12 16
e T T
° 'h\‘.Q.\ g| (X) = |‘X2
- I~
] S
@ - xw
e 152 S~
i ~o >
~ ~
3 . TNa S
E% o) ‘\\\l\\~\x\\
< . N |
2 0% @ ol AN
‘\Os X~
® x=—= (b) o=I6 ~ ~.
IO_5-- .\u =
o—-— (c) o =64 \'\.
1 | |

Figure 3.5.2. The relative error of the semidiscrete method (discretization
in t) vs. the time degree q hBthe log log scale for the
problem (3.1.1) with gi(x) = 1-x" and the following meshes:

(a) vy = 1/85, T3 = 4/85, 13 = 16/85, 74 = 64/85, o < 1

(b) =ty = 1/85, 13 = 64/85, T3 = 16/85, T4 = 4/85, o = 16

(¢) Ty = 4/85, T = 64/85, 13 = 1/85, T4 = 16/85, o = 64.
3.6. The complete discretization.

Let us define
(3.6.1) S = S(R,g,4) = Tg-IXR
]

(3.8.2) V = V(R,g,A) = ’i‘ng.
Combining the results of previous sections we get
Theorem 3.6.1. Let u, € X be the solution of the problem P and u, € S be

the finite element solution
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(3.6.3) B(us,v) = F(v) VveV,
Then, if the space R has the property X, q 2 a5 2 ... 2 ay 21, and
ti/TJ €S0 for 1 <1< J<N, then
(3.6.4)  Ju_-ulle € Cqr/2NOH(R)) Tmax(1, 2T 172 )i pepy —
s 0'X 1 0 S
weS
and

Theorem 3.6.3. Let uO € X be the solution of the problem P and ug € S be

the solution of (3.6.3). If ¢ denotes the error of the semidiscrete method

1

in (3.4.9) (discretization in t) and €, is the error of the semidiscrete

method (3.2.1) (discretization in x) and R 1is (g&,n,v)-regular, then

(3.6.5) Hus-uOHX < C(el(l-+n(R)+v(R))€(R)+€2).

3.7. Numerical examples.

The h-p version of the finite element method gives large freedom to
select elements in the space and time variables. This flexibility can be
employed in various ways, for example, in connection with adaptive approaches.
We also have seen that for q =1, the method coincides with the Crank-
Nicholson method and hence the h-pversion in t can be implemented as a spe-
cial solver for the stiff ODE’s arising from the solution of the semidiscrete
method discussed in Section 3.2. Various aspects of this feature will be
addressed in the forthcoming papers in this series. Here we will present some
illustrative results related to the question of the optimal relation between
p,q and a mesh in one dimensional setting we used earlier.

We will assume that in space (i.e., x-variable) only one element of
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degree p 1is used, while in the time variable we use N elements of degree
q. The shape functions are integrals of Legendre polynomials {in x), and in
t we use Legendre polynomials as trial shape functions and integrals of
Legendre polynomials and linear ones as test functions. Using the band solver

we need

b of]
"

(3.7.1) NeW

arithmetic operations, where

p3 for 2q
(3.7.2) W~

v

p

A

4q3p for 2q < p.

We consider the problem (3.3.1) for g(x) = gz(x) =1-x and g(x) =
gg(x) = cosg5 as the representatives of the solutions for unsmooth and smooth
initial data problems.

In the case of g(x) = g2(x) we have used the radical mesh in t, 1i.e.

n7
(3.7.3) t = Bﬂ , n=0,1,2,...,N, with ¥ = 3,

and for g(x) = gs(x) we have used the uniform mesh

(3.7.4) t =

In the following figures we present the accuracy in dependence on (p,q)
in the scale log(relative error) vs. o« with qa = p. We also show the work
needed for computation based on (3.7.1 - 3.7.2).

For low q, the error is governed by the time integration, i.e., we deal
here essentially with the case of semidiscrete method with time discretization
(as discussed in section 3.4).

In contrast, high q’'s essentially show the performance of the semidis-

crete method with discretization in space only (as discussed in section 3.2).
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In Figures 3.7.1 - 3.7.3 we present the results for g(x) = gz(x) =
1-x. We see that for any required accuracy the minimal computational work
is needed when q is selected low and N large.

Note that the numbers in parentheses indicate the value of q used and
e.g. the value 5.3E4 denotes that the approximate work W = 5.3-104 has
been needed to compute the finite element solution.

In Figures 3.7.4 - 3.7.6, we show the analogous results for g(x) =

gi. Here we see, in contrast to the previous case, that the best

gg(x) = cos
is to select one time element and large q.

In both cases we used the same p and q 1in all time intervals. The
results show that the flexibility of the method, when properly employed, leads
to the large increase of computational effectivity. Various adaptive

approaches here will be very effective tools for such an optimal choice.

These aspects will be addressed in the forthcoming paper.
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for the

(N = 6)
The initial function is gz(x) = 1-x.

h-p version

The performance of the

Figure 3.7.2.

relationship p = qa.
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for the

(N =12)
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The performance of the h-p version

Figure 3.7.3.

The initial function is gz(x) = 1-x

a
=q .

relationship p
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for the relation-

(N=1)

The initial function is g3(x) = cos

The performance of the p-version

Figure 3.7.4.

>
5

a

ship p=q.
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for the

(N = B)

The initial function is ga(x) =

The performance of the h-p version

Figure 3.7.5.

(:OS"x
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39

a

relationship p =q .
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2

h-p version (N = 12) for the
The initial function is ga(x) = Cos
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The performance of the
relationship p=gq .

Figure 3.7.6.
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The Laboratory for Numerical analysis is an integral part of the
Institute for Physical Science and Technology of the University of Maryland,
under the general administration of the Director, Institute for Physical
Science and Technology. It has the following goals:

o To conduct research in the mathematical theory and computational
implementation of numerical analysis and related topics, with emphasis
on the numerical treatment of linear and nonlinear differential equa-
tions and problems in linear and nonlinear algebra.

o To help bridge gaps between computational directions in engineering,
physics, ete., and those in the mathematical community.

o To provide a limited consulting service in all areas of numerical
mathematics to the University as a whole, and also to government
agencles and industries in the State of Maryland and the Washington
Metropolitan area.

o To assist with the education of numerical analysts, especially at the
postdoctoral level, in conjunction with the Interdisciplinary Applied
Mathematics Program and the programs of the Mathematics and Computer
Science Departments. This includes active collaboration with govern-
ment agencles such as the National Bureau of Standards.

o To be an international center of study and research for foreign
students in numerical mathematics who are supported by foreign govern-
ments or exchange agencies (Fulbright, etec.)
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